Oxygen simulations in GFDL eddy-resolving coupled climate model

Daniele Bianchi, Eric Galbraith
EPS, McGill University

Steve Griffies, Mike Winton, Whit Anderson, John Dunne
NOAA Geophysical Fluid Dynamics Laboratory

Jorge Sarmiento, Rick Slater, Carolina Dufour
AOS, Princeton University
Climate Models are needed for projections

CMIP5 models predict warming and deoxygenation (Bopp et al., 2013)
but models suffer from biases…

- OMZ too strong, confined to the east
- OMZ reaching too deep in the water column
- Weak Arabian Sea and strong Bay of Bengal OMZ
- etc.

Bopp et al., 2013
Models predict O_2 either stable or increasing over open-ocean OMZs.

Bopp et al. 2013

Cocco et al. 2013
The ocean is turbulent

Kinetic energy is mostly at the scale of eddies (~100 km) - but current climate models do not resolve them.

Delworth et al., 2012
Fine-scale jets dominate the tropics

E.g. zonal currents in the Equatorial Pacific

Czeschel et al., 2012
Main Questions

- Do we have a biased view of ocean oxygen and its response to change?
- Is resolving the mesoscale necessary to represent the mean state and variability in OMZ?
- What is the role of eddies and jets in the OMZ oxygen balance?
Fully coupled eddy-resolving climate model

- 1/10° ocean resolution (3600x2700)
- 1/2° atmosphere resolution
- no parameterization of mesoscale eddy effects
- costly – 2 years/day on 20,000 processors

Developed for climate, added simple P, C and O₂ cycles

For comparison, ESM2M, a typical IPCC model:

- 1° ocean resolution (360x200)
- 2° atmosphere resolution
- parameterization of eddy effects
Running tracers is extremely costly (advection)

need to minimize the number of advected tracers

BLING – computationally efficient model based on:

\(\text{PO}_4, \text{DOP}, \text{O}_2, \text{Fe, DIC, Alk.} \)

Biogeochemistry Light Iron Nutrients Gases
Running tracers is extremely costly (advection)

need to minimize the number of advected tracers

miniBLING – more computationally efficient!

PO$_4$, DOP, O$_2$, Fe, DIC, Alk,
RUNS: (1) Control at 286 ppm pCO$_2$
(2) 1% per year pCO$_2$ increase to doubling
Model simulation - overview

- Rich mesoscale dynamics (eddies, jets, boundary currents)
- Realistic baseline simulation – winds, currents, T,S, climate
- Realistic internal variability (e.g. ENSO)
CM2.6 eddy kinetic energy

CM2.6 fully captures mesoscale dynamics

Delworth et al., 2012

Liege, 2014
Model O_2 (μmol kg$^{-3}$) at 250 m depth
OMZ – baseline simulation (O$_2$ at 250m)

Realistic upper OMZ:
- intensity
- westward propagation
- fine structure (jets)

Remaining biases:
- Indian Ocean
- South Pacific OMZ
- Gulf of Guinea
- low O$_2$ at depth

Liege, 2014
Main OMZ biases – Indian Ocean
Main OMZ biases – ETSP
Improvement from 1\textdegree{} models

- O_2 bias reduction
- more realistic ventilation of eastern OMZ by jets
- reduction of OMZ intensity and size
Projected O_2 changes

ΔO_2 at 250 m (last 20 year)

high latitude losses, low latitude gains
largest O_2 increase in Indian and Atlantic
OMZ

Liege, 2014
Projected changes – CM2.6 vs ESM2M

- Large-scale pattern agreement
- Stronger signal at high resolution
- Regional differences noticeable
- Decadal variability?
Large variability (seasonal, interannual)

Timeseries of O_2 at 250 m over the ETNP
Summary

• Very preliminary work
• First global eddy-resolving atmosphere-ocean coupled simulation with O₂
• Realism of upper-ocean OMZ greatly improves, but biases remain
• Richness of the simulation is enormous – e.g. O₂ balances, variability and change, regional patterns etc.
Acknowledgements

GFDL/NOAA scientists for the huge investment of time and resources to developing and run CM2.6

Jorge Sarmiento’s group at Princeton for the development and inclusion of the biogeochemical model

Sources of funding:

- NOAA
- NASA
- CIFAR