Modeling the spring bloom in North and North West Iberia by means of a N2PZD2 model

Luz María García García
(luz.garcia@co.ieo.es)
Manuel Ruiz Villarreal
Pablo Otero Tranchero

and the invaluable advice of the biologists...
Antonio Bode
Manuel Varela
Miguel Bernal

We thank NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS)
GHER Colloquium, Liege. 13th-17th May, 2013
The IEO modeling group

- Providing insight on circulation off N and NW Iberia for ecosystem studies in support to the intense IEO ecosystem research in the area.
- The main interest is on high resolution shelf and slope processes (upwelling, river plumes, slope currents. . .)
- Coupling of the physical model to marine ecosystem models and Lagrangian models.

Project REPRODUCE
Marifish EraNet
Understanding the mechanisms that drive the recruitment process, i.e. the appearance of a new generation of individuals in a fish stock.

Project ASIMUTH
FP7 Space Theme
ASIMUTH aims to Develop forecasting capabilities to warn of impending harmful algal blooms (HABs).

In this talk...
1 IEO MODELS
 - Hydrodynamic model
 - Lower Trophic Level Model

2 Results
 - Seasonal time scale
 - Monthly time scale
 - Event scale

3 Conclusions
Configuration

ROMS Rutgers version 3.5
30 vertical levels
3.5km horizontal resolution.
23 rivers
Simulated period: 2006-2007
The adopted model

Configuration details: initial and boundary conditions

Nitrate: the limiting nutrient in the area

- **CLIMATOLOGY:** NODC World Ocean database 2009 (WOA2009)
- T/NO_3 relationships
Configuration details: initial and boundary conditions

Nitrate: the limiting nutrient in the area

- **CLIMATOLOGY**: NODC World Ocean database 2009 (WOA2009)
- **T/NO₃ relationships**: We want to include nutrient variability through the boundaries!!!

NW Iberia upwelling system

- Reliable characterization of the Eastern North Atlantic Central Water (ENACW).
 - Álvarez-Salgado et al. (2002). New production of the NW Iberian shelf during the upwelling season...
 - IEO-VACLANN data
 - WOA2009 data
Role of convective winter mixing on nutrient supply.

Hartman et al., 2012. Seasonal and inter-annual variability in productivity in relation to winter nutrient concentrations in the BoB.
Role of convective winter mixing on nutrient supply.

Hartman et al., 2012. Seasonal and inter-annual variability in productivity in relation to winter nutrient concentrations in the BoB.

Inter annual variation in mixed layer depth (MLD) and Productivity (NCP) assessed using oxygen data.

<table>
<thead>
<tr>
<th>Year</th>
<th>MLD ARCO 0.5°C (m)</th>
<th>NCP arcpol (Mol C m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005/2006</td>
<td>469</td>
<td>20.91</td>
</tr>
<tr>
<td>2006/2007</td>
<td>212</td>
<td>10.07</td>
</tr>
<tr>
<td>2007/2008</td>
<td>322</td>
<td>10.63</td>
</tr>
<tr>
<td>2008/2009</td>
<td>439</td>
<td>19.91</td>
</tr>
<tr>
<td>2009/2010</td>
<td>476</td>
<td>16.91</td>
</tr>
</tbody>
</table>
Shift from diatoms to dinoflagelates as the bloom advances. E.g. Tilstone (2003)

Interest on the **spring bloom**: unique phytoplankton functional group will be DIATOMS (*Chaetoceros socialis*).

Adapted parameters

- **K_{NO3}** (mmol NO3/m3): Half saturation constant for Nitrate uptake. $\frac{NO3}{K_{NO3}+NO3}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Mixed diatoms Ria Vigo</th>
<th>Sel. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{NO3}</td>
<td>0.5 (Fennel et al., 2006)</td>
<td>0.37 (Seeyave et al., 2013)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

- α: initial slope of the P-I curve (mol C g Chl$^{-1}$ (Wm$^{-2}$)$^{-1}$d$^{-1}$).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Sel. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.025 (Fennel et al., 2006)</td>
<td>0.05 (Bode and Varela, 1996, 1998)</td>
</tr>
</tbody>
</table>

- g_{max}: maximum grazing rate for zooplankton (day$^{-1}$).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Sel. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{max}</td>
<td>0.6 (Fennel et al., 2006)</td>
<td>1 (based on Kone, 2005)</td>
</tr>
</tbody>
</table>
SST: AVHRR vs. Model

A) Winter 2006. SATELLITE

B) Winter 2006. MODEL

A) Winter 2007. SATELLITE

B) Winter 2007. MODEL

Satellite 2006

Model 2006

Satellite 2007

Model 2007
SST: AVHRR vs. Model

C) Spring 2006. SATELLITE
D) Spring 2006. MODEL

C) Spring 2007. SATELLITE
D) Spring 2007. MODEL
Chlorophyll-a: MODIS-OC3 vs. model
Chlorophyll-a: MODIS-OC3 vs. model

Chlorophyll-a: MODIS-OC3 vs. model

Seasonal time scale

E) Summer 2006, SATELLITE
F) Summer 2006, MODEL

Satellite 2006
Model 2006
Satellite 2007
Model 2007
Chlorophyll-a: MODIS-OC3 vs. model
Chlorophyll-a: MODIS-OC3 vs. model

Summarizing so far...

- Winter 2006 was colder than winter 2007 (MODEL/SATELLITE)
- Spring Chlo-a was higher at the open ocean in 2006 than in 2007 (MODEL/SATELLITE)
- NW Iberia Upwelling was weaker in Spring 2006 than in Spring 2007
 - SST was lower in NW Iberia shelf in 2007 than in 2006 (MODEL/SATELLITE)
 - Chlo-a was higher in NW Iberia shelf in 2007 than in 2006 (MODEL/SATELLITE)
- Upwelling was more intense in Summer 2007 than in Summer 2006
 - SST was lower in NW Iberia shelf in 2007 than in 2006 (MODEL/SATELLITE)
 - Chlo-a was higher in NW Iberia shelf in 2007 than in 2006 (MODEL/SATELLITE)
Chlorophyll-a: MODIS-OC3 vs. model

Seasonal time scale

Monthly time scale

Event scale

2006

2007
Chlorophyll-a: MODIS-OC3 vs. model

NRT (1-km around Iberia)
Operational Processing Chain 2006-2007

REPROCESSED (500 m around Iberia)
Summer 2012
Temperature: Radiales (IEO) vs. model
Chlorophyll: Radiales (IEO) vs. model

- Seasonal time scale
- Monthly time scale
- Event scale
Nitrate: Radiales (IEO) vs. model

D) Radial Coruna. Station: 2. Year: 2006

Pelacus cruises: Springs 2006 and 2007

Pelacus0407: 27th of March 2007 to 23rd of April 2007.
Reasonable results in spite of the simplicity of the model.

1. In the simple model consider space and time varying K_{NO3}, α, etc.
2. Expected increase in the complexity of the model by considering, at least, 2 phytoplankton and 2 zooplankton classes:
 - It would allow for a better representation of the spring bloom: shift from diatoms to dinoflagelates
 - Better coupling with Higher Trophic Levels

Be careful with the homogeneity of the data sets being compared

Our model is a valuable tool to estimate primary production and its temporal and spatial variability at different scales